Forest Ecology and Management 315 (2014) 160-172

=

mForest Ecology
and Management

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Drivers of forest harvesting intensity patterns in Europe

@ CrossMark

Christian Levers **, Pieter ]. Verkerk , Daniel Miiller *, Peter H. Verburg‘, Van Butsic *,
Pedro J. Leitdo?, Marcus Lindner”, Tobias Kuemmerle *¢

2 Geography Department, Humboldt-Universitdt zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

b European Forest Institute, Sustainability and Climate Change Programme, Yliopistokatu 6, 80100 Joensuu, Finland

€ Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO), Theodor-Lieser-Str. 2, 06120 Halle (Saale), Germany
dnstitute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 Amsterdam, The Netherlands

€ Earth System Analysis, Potsdam Institute for Climate Impact Research, Telegraphenberg A 31, 14473 Potsdam, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 1 November 2013

Received in revised form 19 December 2013
Accepted 23 December 2013

Available online 23 January 2014

Forests provide humankind with essential raw materials and the demand for these materials is increas-
ing. Further expanding forestry into unmanaged forests is environmentally costly and increasing forest
area via plantations will not immediately lead to increased wood supply. Thus, just like in agriculture,
forestry faces the challenge how to intensify forest management in existing production forests in sustain-
able ways. Yet, our current understanding of what determines forest management intensity is weak, par-
ticularly at broad scales, and this makes it difficult to assess the environmental and social trade-offs of
intensification. Here, we analyse spatial patterns of forest harvesting intensity as one indicator for forest
management intensity across Europe, a region where most forests suitable for production are already in
use and where future intensification is likely. To measure forest harvesting intensity, we related har-
vested timber volumes to net annual increment for the period 2000-2010. We used boosted regression
trees to analyse the spatial determinants of forest harvesting intensity using a comprehensive set of bio-
physical and socioeconomic explanatory variables. Our results show that forest harvesting intensity var-
ied markedly across Europe and harvested timber volumes were well below the increment in most
regions. Harvesting intensity was especially high in southern Finland, southern Sweden, southwestern
France, Switzerland, and the Czech Republic. The spatial patterns of forest harvesting intensity were well
explained by forest-resource related variables (i.e., the share of plantation species, growing stock, forest
cover), site conditions (i.e., topography, accessibility), and country-specific characteristics, whereas socio-
economic variables were less important. We also found the relationship between forest harvesting inten-
sity and some of its predictors (e.g., share of plantation species, accessibility) to be strongly non-linear
and characterised by thresholds. In summary, our study highlights candidate areas where potentials
for sustainably intensifying timber production may exist. Our analyses of the spatial determinants of har-
vesting intensity also provides concrete starting points for developing measures targeted at increasing
regional wood supply from forests or lowering harvest pressure in regions where forests are heavily used.
Finally, our study emphasises the importance for systems’ understanding for designing and implement-
ing effective sustainable forest management policies.
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1. Introduction

Land use provides humanity with essential food, fibre, and
bioenergy, but is also a major force of global environmental change
(MA, 2005; Haberl et al., 2007; Pereira et al., 2010). As fertile land
is getting scarce (Lambin and Meyfroidt, 2011) and further
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expansion of land use into remaining wildlands incurs high envi-
ronmental costs, future production increases will, to a large extent,
have to rely on sustainably intensifying land already in use (Foley
et al.,, 2011; Tilman et al., 2011). Yet, assessing where future pro-
duction can be increased and understanding the trade-offs of
intensification is currently limited by incomplete knowledge about
the spatial patterns and drivers of intensification pathways, espe-
cially at broad geographic scales (Verburg et al., 2009; Erb, 2012;
Lambin et al., 2001).

This is particularly the case in forestry, where the spatial pat-
terns of forest management intensity and the drivers that produce
these patterns remain highly unclear. This is unfortunate, because
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forest management effects on forest ecosystem functioning vary
substantially depending on management intensity. For example,
the intensity by which forests are managed affects forest structure
(Vilén et al., 2012), soils (Jandl et al., 2007), biogeochemical cycles
(Nabuurs et al., 2013; Luyssaert et al., 2012), biodiversity (Paillet
et al., 2010), and ecosystem service provisioning (Gamfeldt et al.,
2013). Understanding the spatial patterns of forest management
intensity and its drivers is therefore important for assessing the
environmental trade-offs of forestry and for identifying opportuni-
ties for sustainable intensification.

Assessing forest management intensity is challenging because
intensity itself is a complex term, encompassing multiple dimen-
sions (Schall and Ammer, 2013). Consequently, forest management
intensity has been examined using a wide range of indicators,
including harvested timber volumes, forest structural parameters
(e.g., the difference between potential and actual biomass storage),
stand establishment practices, tree species composition, length of
rotation periods, human appropriated net primary production, or
the amount of fertiliser, herbicides, and machinery used (Luyssaert
et al., 2011; Forest Europe and UNECE FAO, 2011; Duncker et al.,
2012). Intensity metrics, which relate inputs (e.g., capital), outputs
(e.g., harvested timber volumes), or system properties (e.g., ecosys-
tem productivity) to each other, can provide insights into land use
intensity patterns and drivers (Erb et al., 2013; Kuemmerle et al.,
2013). For example, interpreting harvested timber volumes with-
out considering ecosystem productivity could be misleading as
the same volume of timber extracted from forest systems with
high or low productivity may indicate very different levels of forest
harvesting intensity. By expressing harvested timber volumes in
relation to the net annual increment, forest harvesting intensity
can be assessed across large regions.

Unfortunately, studies assessing forest harvesting intensity
have either focussed on the national scale (e.g., relying on national
forest resource assessments, (Kuusela, 1994; Forest Europe and
UNECE FAO, 2011), or on small study regions (see Schall and
Ammer, 2013 for an overview), both of which precludes under-
standing spatial patterns of management intensity. Only two stud-
ies addressed drivers of forest harvesting patterns at broad spatial
scales. Analysing timber harvesting patterns in European Russia
showed that road density, forest composition, and total forest area
were important determinants of harvesting patterns (Wendland
et al., 2011). A range of spatial variables including tree species
composition, slope, forest coverage, proximity to cities, and conser-
vation areas allowed mapping different forest management sys-
tems in Europe using an expert-based approach (Hengeveld
et al.,, 2012). We know of no study explicitly addressing broad-
scale patterns of forest harvesting intensity.

Evidence on the drivers of forest owner’s decisions to manage
their forest intensely or not was only derived from local-scale case
studies. These studies, mainly focussing on non-industrial, private
forest owners, show that a range of policy, forest resource, and
market factors are potentially important in determining timber
volumes extracted (Beach et al., 2005; Amacher et al., 2003). For
example, forest management plans, property size, and income
from agriculture determined harvesting decisions in Norway
(Sterdal et al., 2008), ownership size and type shaped harvesting
decisions in the southern US (Arano and Munn, 2006), or the
demand for wood products and associated price changes were
important drivers of harvesting decisions in the US and Australia
(Adams et al., 1991; van Putten and Jennings, 2010). Furthermore,
population density, forest size, and distance to urban areas influ-
enced harvesting in the US (Wear et al.,, 1999; Munn et al., 2002).
Yet, none of these studies addressed patterns and drivers of forest
harvesting intensity for larger regions. Clearly, there is a research
gap at the regional scale, which is unfortunate because of its major

importance for policy making and for mitigating the impacts of
global environmental change (Wu, 2013).

Regression models are powerful tools to assess drivers and
determinants of land use patterns (Miiller et al., 2011; Baumann
et al,, 2011; Wendland et al., 2011). Algorithmic models are par-
ticularly promising because they do not impose any a priori
relationship between target and predictor variables. Fewer
requirements on the data structure make them well-suited to
investigate the complex and often non-linear interactions
between predictors and response in land systems. Algorithmic
models, such as boosted regression trees (BRT), generally attain
a higher model fit and predictive accuracy than traditional statis-
tical approaches (Elith et al., 2006; Lakes et al., 2009; Lin et al.,
2011). Because of their higher predictive accuracy, better ability
to generalise from data, and possibility to handle large heteroge-
neous data sets, algorithmic models are gaining growing attention
in ecology (Leathwick et al., 2006; De’ath and Fabricius, 2000) and
land change science (Miiller et al., 2013; Gellrich et al., 2008), but
no study has so far used BRTs to assess spatial determinants of
forest harvesting intensity.

In this study, we sought to quantify and understand broad-scale
spatial determinants of forest harvesting intensity patterns across
the European Union (EU-27) plus Norway and Switzerland. As
intensity metric, we used the ratio of harvested timber volume
(fellings and harvest losses) and net annual increment volume
(hereafter referred to as “forest harvesting intensity”) because this
ratio is an important criterion to assess the sustainability of forest
resource use. As explanatory variables, we focused on selected fac-
tors that are indirect proxies of the underlying drivers of forest har-
vesting intensity (hereafter referred to as “spatial determinants™).

Europe is an interesting case for assessing forestry intensity
since forest use in Europe has a long history. After centuries of
extensive deforestation, Europe’s forests increased in the 19th
and 20th century as a result of farmland abandonment, afforesta-
tion, and nature protection (Kaplan et al., 2012; Rudel et al,
2005), and forests now cover 37% of Europe’s terrestrial surface.
Though forest cover has increased steadily during the last decades
(0.37% per year, Forest Europe and UNECE FAO, 2011), forest har-
vesting intensity also remarkably increased from 58% (1990) to
62.4% (2010) and is expected to increase further (UNECE and
FAO, 2011; Bottcher et al., 2012). Forest cover is distributed very
unevenly across Europe and the region is furthermore character-
ised by large environmental (e.g., boreal to Mediterranean), histor-
ical (e.g., capitalism vs. socialism), ethnic, and economic (highly
industrialised vs. less industrialised economies) heterogeneity.
How this heterogeneity relates to spatial patterns in forest harvest-
ing intensity remains largely unclear. Understanding forest har-
vesting intensity is one Kkey aspect for assessing forest
management intensity. To ensure the sustainable intensification
of forest management in light of growing demands for timber
products would, however, require a range of indicators addressing
the multidimensionality of forest management intensity.

We compiled time series of sub-national forest harvesting
intensity patterns in Europe between 2000 and 2010 and used
boosted regression trees to quantify the influence of a set of
biophysical, infrastructure, and socioeconomic variables in shaping
these patterns. Specifically, we ask the following research
questions:

1. What are the spatial patterns of forest harvesting intensity in
Europe?

2. What are the most influential spatial determinants of these pat-
terns and what is their relative importance?

3. What is the nature of the relationships between forest harvest-
ing intensity and its spatial determinants?
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2. Material and methods
2.1. Data

2.1.1. Forest harvesting intensity

To estimate forest harvesting intensity, we collected sub-na-
tional forest harvesting statistics (m>/ha), net annual increment
(m3/ha), and forest area (ha) from national forestry reports, statis-
tical yearbooks and databases, and by contacting national experts.
Statistics were collected for the entire EU-27 plus Norway and
Switzerland and - when possible - for each year between 2000
and 2010 (see Tables A.1-A.3 for a full list of references). Data were
collected for administrative units ranging from the national scale
(for small countries) to the district level (for large countries), with
1 to 107 regions representing a single country (see in Section 3).
We excluded six regions with major data gaps resulting in 454
administrative units that were used for subsequent analysis.

The dataset was harmonised to correct for differences in na-
tional harvesting definitions (e.g., harvesting volume over or under
bark, in- or exclusion of harvest losses). To do so, we calculated the
annual volume share per region in the total harvest volume for a
particular country based on the regional statistics, and used those
shares to subdivide national-level, harmonised harvest data
representing roundwood removals (m?) under bark and fuelwood
(FAOSTAT, 2012). Data for some regions (see Table A.1) were miss-
ing for certain years and we then assumed an identical volume
share of the national harvest levels for the closest years where data
were available. The same data collection and harmonisation steps
were repeated for statistics concerning net annual increment
(NAI) and forest area (see Tables A.2 and A.3), which were harmo-
nised with reported increment levels and forest area for the
year 2000 (Forest Europe and UNECE FAO, 2011) to correct for
differences in national harvesting definitions. To facilitate the
comparison of forest harvest intensity across years, we used the
average net annual increment for the period 2000-2010. To
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convert wood removals to fellings, we added bark (Forest Europe
and UNECE FAO, 2011; UNECE and FAO, 2010) and stem harvest
losses (UNECE and FAO, 2000). Based on these data, we calculated
the volume of wood fellings and NAI and subsequently forest
harvesting intensity (as a percentage) for the period 2000-2010.

2.1.2. Predictor variables

We reviewed studies investigating harvesting decisions to iden-
tify a set of variables potentially influencing forest harvesting
intensity. The reviewed studies were mostly conducted on local
to regional scale and we assumed that the influence of the identi-
fied variables on forest harvesting intensity found by these studies
would potentially also apply at the pan-European scale. Due to the
deductive and exploratory character of our study, we did not im-
pose any ranking of a variables’ influence, whereas the general type
of relationship between variable and forest harvesting intensity
was hypothesised a priori (Table 1; see Text A.1 for the rationale
behind selecting the variables used in our analyses and detailed
information on the sources of these variables). We identified 23
predictor variables that we hypothesise to potentially influence
forest harvesting intensity in Europe. We grouped the predictor
variables - except the country dummy - into three main groups:
(i) forest resource variables, (ii) environmental conditions, and
(iii) other socioeconomic variables. Thirteen variables were avail-
able as raster layers, the majority with a 1 x 1 km? native resolu-
tion. We re-projected all raster layers into the Lambert
Azimuthal Equal Area projection and used bilinear interpolation
to resample growing stock and ruggedness data from their native
resolutions to the 1 x 1 km? target resolution. Subsequent to the
harmonisation of predictors, we aggregated these variables to the
administrative units of the target variable. Therefore, we weighted
data related to non-forest land covers with a continuously scaled
forest cover map to represent forested areas more prominent when
calculating average values for the utilised administrative units. To
do so, we used the forest map by Pekkarinen et al. (2009), which
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Fig. 1. European administrative units (NUTS0-3) showing (a) average forest harvesting intensity (%) and (b) average harvested timber volumes (m>3/ha) for 2000-2010.
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Table 1

Description of single predictors, their measurement units, resolutions (Res), data sources, descriptive statistics, spearman correlations (Corr) and expected relations (Sign) with
forest harvesting intensity, and data formats (Format). Descriptive statistics were calculated for numeric variables only. Symbols for Sign indicate whether predictor increases go
along with increases (+) or decreases (—) in forest harvesting intensity or no explicit relationship (e). Abbreviations in the column Format are: R - raster, V - vector, S - static, and
D - dynamic. Time-variant variables are marked with an asterisk and their descriptive statistics were calculated with averaged values.

Factor Predictor Description Unit  Res Source Mean SD Corr  Sign Format
name
Forest BEECHOAK Share of beech (Fagus spp.) and oak (Quercus % 1km  Brus et al. (2012) 2234 1863 -0.14 + RS
resources spp.) in total species
FCOV Forest cover of Europe % 1km  Pekkarinen et al. (2009) and 34.55 18.72 0.14 + R,S
Schuck et al. (2002)
PINESPRUCE  Share of pine (Pinus sylvestris) and spruce % 1km  Brus et al. (2012) 2985 2843 039 + RS
(Picea spp.) in total species
PLANTATION Share of plantation species (Robinia spp., % 1km  Brusetal (2012) 6.55 10.04 -027 + R,S
Populus spp., Eucalyptus spp., Pinus pinaster)
in total species
TOTPROT Share of protected forest in total forest % 1km IUCN and UNEP-WCMC 19.13 1895 -0.06 — R,S
(2012) and EEA (2011)
TOTVOL Total growing stock m3/ha 500m Gallaun et al. (2010) 154.15 7040 031 + RS
Environmental POORSOIL Share of low productive soil limiting growth % 1km  Driessen et al. (2001), EC 11.07 1660 -0.16 — R,S
conditions (2006), Verkerk et al. (2011)
PRCP5M Precipitation sums of growing season mm 1km  Hijmans et al. (2005) 33042 106.61 0.01 + R,S
RUGG Terrain ruggedness expressing relief energy m ~1km NASA (2006) and Riley et al. 68.05 61.96 -043 - R,S
(1999)
SBC Share of soil types with no bearing capacity % 1km  EC(2006) and Verkerk et al.  7.95 13.84 024 - R,S
(2011)
TEMP Long term mean temperature °C 1km Hijmans et al. (2005) 8.45 3.20 -033 + RS
WATSHORT  Difference between precipitation potential mm 1km New et al. (2002), Metzger -27.22 3895 014 - RS
evapo-transpiration, both during growing et al. (2005) and Hijmans
season et al. (2005)
ACC50 Travel time to cities >50,000 inhab. min 1km  Nelson (2008) 137.37 8460 -0.24 o R,S
Socio-economy FAOintens’ 1 yr time lag of felling-to-increment ratios % . See A.1-A.3 6396 52.10 NA + V.D
GDP PPS’ 1 yr time lag of gross domestic product % . EC (2012) 19,049 7938 -0.10 + V.D
GVAprim’ 1 yr time lag of gross value added in I. sector % . EC (2012) 457.15 948.29 0.08 + V.D
JOBLESS' 1 yr time lag of jobless ratios % . EC (2012) 8.20 3.94 006 e V.D
LABOURprim” 1 yr time lag of labour force in I. sector % . EC (2012) 3289 6238 0.02 + V.D
OIL 1 yr time lag of heating oil prices incl. tax % . EC (2013) 751.30 202.27 -0.18 + V.D
PRIVFOR Share of privately owned forest % . Pulla et al. (2013) 59.36 26.02 -0.11 + V.S
TIMBER 1 yr time lag of timber prices % . FAOSTAT (2012) 82.15 2211 -040 + V.D
URBRUR Urban-rural typology - . EEA (2010) NA NA NA . V.S
COUNTRY Dummy to capture country characteristics - . Own calculation NA NA NA . V,S

we calibrated to match regional-and national-level forest area sta-
tistics as described in Section 2.1.1 using the approach developed
by Schuck et al. (2002). We then calculated the percentage change
for one-, three-, and five-year periods for the socioeconomic vari-
ables that were available as annual time series on the utilised
administrative units and merged them with the aggregated spatial
data.

2.2. Boosted regression trees

We used boosted regression trees (BRTs) to quantify the influ-
ence of a set of spatial determinants in shaping forest harvesting
intensity patterns in Europe. BRTs evolved in the tradition of ma-
chine learning techniques and belong to the family of non-para-
metric models. The most important difference to statistical
approaches is that machine learning techniques are distribution-
free (i.e., no a-prior assumptions on the distribution of the target
variable or explanatory variables are made). Machine-learning
techniques assume independent observations and that the process
generating the data is complex and unknown, and therefore use an
algorithm to learn the relationship between a target variable and
explanatory variables (Breiman, 2001b; Elith et al., 2008). BRTs
build upon decision trees, which explain the variance of a target
variable by splitting up the variable space into rectangles in a bin-
ary fashion. A simple model (constant) is fitted to each partition by
fitting the mean response for observations in that partition (Elith
et al., 2008; Hastie et al.,, 2011). From the suite of available

predictors, BRTs select those that minimise the prediction errors.
This is the main difference to Random Forest models, where a ran-
dom feature selection is applied before fitting individual trees
(Breiman, 2001a). Contrary to decision trees with a single but
potentially complex decision tree, BRTs use many simple decision
trees in an ensemble (i.e., boosting). Boosting is a numerical opti-
misation technique that minimises the loss function of a model
by adding trees in a forward stage-wise fashion (i.e., existing trees
remain unchanged when more trees are added; only the fitted
value is re-estimated). The first tree maximally reduces the loss
function, whereas all following trees focus on the residuals of the
previously fitted model, hence explicitly on the unexplained vari-
ance in the target variable (Elith et al., 2008). This leads to drasti-
cally increased predictive accuracy (Hastie et al., 2011; Friedman
et al., 2000). BRTs do not tend to overfit because they introduce
stochasticity by randomly withholding a certain percentage of
the data while fitting the model (Dormann et al., 2013). Further-
more, BRTs are robust against missing data and collinearity of pre-
dictors while being able to handle non-linear relationships and
interaction effects (Hastie et al., 2011; Elith et al., 2008). However,
for interpreting the results, knowledge on the correlation structure
between the predictors is beneficial which is depicted in Fig. A.2 in
the Supplementary material. Interaction effects reinforce the
shared influence of two predictors compared to decision trees with
no variable interactions. Assessing the nature and magnitude of
possible interaction effects yields a better understanding of the
investigated phenomenon (Elith et al., 2008).
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Generally, BRTs combine high predictive accuracy with good
interpretability of results (Friedman, 2001), making them a prefer-
able tool to investigate the spatial determinants of forest harvest-
ing intensity. The calibration of BRTs necessitates specifying four
main parameters: (i) number of trees (nt), (ii) tree complexity
(tc), (iii) learning rate (Ir), and (iv) bag fraction. The number of trees
defines how many single decision trees are used in the model, tree
complexity defines the maximum allowed interaction levels
between predictors, the learning rate scales the contribution of
each single decision tree to the entire BRT model, and the bag
fraction defines the share of data that is withheld from the training
data while fitting each single decision tree. A detailed mathemati-
cal introduction to BRTs is provided by Hastie et al. (2011) and a
hands-on tutorial by Elith et al. (2008).

To explain the spatial determinants of forest harvesting inten-
sity patterns, we carried out two analyses: First, we fitted a static
model using the average forest harvesting intensity over the study
period (2000-2010) as response and all static variables and aver-
ages of time-variant predictor variables as predictors. This model
allows for the assessment the general spatial determinants of for-
est harvesting intensity patterns across Europe. Second, we fitted
ten annual models, one for each year, using the annual time series
of the target variable (from 2001 to 2010) as response and all sta-
tic variables, change ratios of time-variant predictor variables, as
well as the time lags of the target variable as predictors. Change
ratios and time lags were tested for one-, three-, and five-year
time periods separately. These time-variant models expand the
static approach by insights into changes in the relative impor-
tance of predictor variables over time. Combining the model
results yields a comprehensive understanding of static and time-
variant spatial determinants of forest harvesting intensity in
Europe.

We used the dismo package (Hijmans et al., 2013) in R (R Devel-
opment Core Team, 2012) to perform all analyses. Different param-
eter settings might influence model performance and we therefore
conducted a systematic sensitivity analysis to test all combinations
of interaction levels from 1 to 9 and learning rates from 0.1 to
0.001 to identify optimal parameter settings for subsequent analy-
ses by using 10-fold cross-validated correlation coefficients. To
avoid stochastic bias, we calculated row and column averages
and selected the parameter combination with the highest values
for tc and Ir (Table A.4). Lower learning rates were also tested
but revealed model impairments and drastically increased compu-
tation time (results not shown). As a result of the sensitivity anal-
ysis, we chose an interaction level of 4 and a learning rate of
0.0025. For each model iteration we randomly withheld 50% of
the full data set (without replacement) to fit the model. The num-
ber of trees was automatically determined by using the gbm.step
routine provided by the dismo package. We did not exclude ex-
treme values of forest harvesting intensity since BRTs are insensi-
tive to outliers (Elith et al., 2008). Only variables with a relative
contribution above that expected by chance (100%/number of vari-
ables; static: 100%/22 =4.55%, dynamic: 100%/23 = 4.35%) were
interpreted (Miiller et al., 2013). We used partial dependency plots
(PDPs) to investigate the relationship between each predictor and
the target variable. PDPs depict a variable’s influence along its data
range while holding all other variables at their mean (Friedman,
2001). To enhance interpretability, all plots were smoothed using
a spline interpolation except for categorical variables. To compare
variable rankings for the time-variant model we calculated Ken-
dall’s tau (Kendall, 1938). We used the Moran’s I measure of spatial
autocorrelation (Moran, 1950) to investigate spatial clustering of
forest harvesting intensity and model residuals. Moran'’s I values
range from —1 (negative autocorrelation; dissimilar objects tend
to cluster) to 1 (positive spatial autocorrelation; similar objects
tend to cluster).

3. Results and interpretation
3.1. Patterns of forest harvesting intensity

The spatial patterns of average harvested timber volumes on
the one hand, and our forest harvesting intensity index on the
other hand differed substantially (Fig. 1). For example, southern
Germany had generally high harvested volume levels (i.e., har-
vested timber volume per hectare forest), but relatively low forest
harvesting intensity due to high forest productivity, whereas in
southern Finland high forest harvesting intensity occurred despite
lower harvest levels. Generally, harvested timber volumes are cor-
related with the productivity of forests, which is, to a large extent,
explained by environmental conditions. Hence, patterns in har-
vested timber volumes do not linearly translate into forest harvest-
ing intensity, highlighting the potential usefulness of our intensity
measure.

Forest harvesting intensity also varied markedly across Europe
(Fig. 1a) and showed moderate spatial clustering (static: Moran’s
I=0.342; time-variant: avg. Moran’s I = 0.321, SD = 0.063), i.e. that
high forest harvesting intensity in one place is associated with high
forest harvesting intensity in neighbouring spatial units. Generally,
an increase in forest harvesting intensity was observable for Cen-
tral Europe during the study period, whereas the intensity level
of Scandinavian and Mediterranean countries remained largely
constant (Fig. A.1). Averaged over the period 2000-2010, regions
with high forest harvesting intensity occurred in the southern
parts of Finland, Sweden, Estonia, Czech Republic, as well as in
Switzerland and smaller areas of northwest Spain, southwest and
eastern France, and some scattered regions in Italy. Harvested tim-
ber volumes exceeded increment volumes substantially in some of
these regions, for example, in southern Sweden and southwest
France. Both, southern Sweden and the southwest of France suf-
fered from severe storm events in the study period. Hence, subse-
quent salvage logging could explain high forest harvesting
intensity.

3.2. Model performance

The static BRT model explained 55% of the variation in forest
harvesting intensity patterns, the time-variant models yielded on
average an explanatory power of 42% (SD=5.02%), as all time-
variant models had a lower performance than the static model (Ta-
ble 2). Interestingly, incorporating time-variant predictors did not
substantially improve model performances. Reasons for this might
be time lags larger than the study period or the lack in quality of
the utilised socioeconomic factors such as timber prices. Another
reason might be the fact that, due to long rotation length, forest
harvesting intensity generally does not strongly depend on annual
changes but rather on static environmental and socioeconomic
conditions. We observed an exceptionally low model performance
in 2006 being more than two standard deviations lower than the
average over the study period. A possible explanation might be
that the storm Gudrun in 2005 significantly disturbed forest man-
agement schemes. Heavy salvage logging could have led to large
timber stocks, which made forest harvesting unnecessary in the
subsequent year. Fig. A.1 supports this assumption showing that
almost entire Sweden showed higher forest harvesting intensity
in 2005 compared to the previous years, followed by a drastic drop
in 2006. Adaptations of forest management schemes along with
negative trends in local roundwood prices as a consequence of
destructive storms (Gardiner et al., 2010) may not be captured
by the data and could have resulted in lower model performance
in the year 2006. Model residuals did not reveal any distinct pat-
terns of spatial autocorrelation (static: Moran’s I = 0.044; dynamic:
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Table 2

Training and validation performance for all models.
Model summary Year

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Static

Number of trees 5430 2870 2490 2850 2530 5440 1830 5560 4440 3750 6110
cVr 0.68 0.63 0.66 0.64 0.54 0.64 0.66 0.66 0.70 0.74
cvr? 0.46 0.40 0.44 0.42 0.29 0.41 0.44 0.44 0.49 0.55
Train r 0.90 0.85 0.85 0.87 0.91 0.78 0.93 0.90 0.90 0.93
Train r? 0.81 0.72 0.72 0.76 0.83 0.61 0.86 0.81 0.81 0.86
Mean total dev. 3415.98 2936.40 2280.80 2360.56 2897.20 7836.64 2688.18 3220.09 3512.75 3057.72 2708.38
Mean residual dev. 721.54 938.51 689.46 651.42 860.99 2034.04 1137.88 521.92 752.38 656.74 446.90
CV std. error 0.04 0.04 0.03 0.02 0.09 0.04 0.05 0.06 0.04 0.03
Est. cv deviance 1937.26 1857.76 1338.90 1486.88 1975.15 5764.77 1828.26 1654.21 1851.32 1589.78 1305.29
Est. cv deviance std error 641.73 656.38 248.65 421.09 741.20 235413 710.73 351.62 518.81 398.51 491.81

avg. Moran’s I = 0.056, SD = 0.031) indicating good model specifica-
tion and agreement with the independent error assumption (Crase
et al,, 2012).

3.3. Variable importance in the static model

The results of the static BRT model showed that the share of
plantation species, terrain ruggedness, and country-specific char-
acteristics contribute together to more than half of the model’s ex-
plained variance (Fig. 2, see Table A.5). Additional forest-related
variables (growing stock, forest cover, share of pines and spruces)
and accessibility also contributed considerably while most socio-
economic variables exerted little effect on forest harvesting inten-
sity except for jobless ratio. Country-specific characteristics were
important and suggest that much of the remaining unexplained
variance were due to country-level variations not captured by
the data. Environmental conditions such as temperature, precipita-
tion, or soil quality, did not influence forest harvesting intensity
significantly, possibly because our harvesting intensity index al-
ready controlled for a large share of productivity effects which
are important determinants of ecosystem productivity and thus
increment.

Fig. 3 displays the PDPs of all predictors selected for interpreta-
tion (see Section 2.2). The share of plantation species was the most
important variable for explaining forest harvesting intensity. After
an initial decline in predicted forest harvesting intensity, intensity

drastically increases beyond a threshold of 20% plantation species
cover and saturates beyond 40% at an intensity of 100-140%. This
indicates that all regions with plantation cover beyond this critical
value were predicted to be intensively harvested, whereas regions
with plantation forest below the threshold were all managed at
relatively lower intensity. A possible explanation for the initial
decrease could be that plantation species occur either in sparsely
forested areas or only infrequently in unmanaged forests consist-
ing of different, non-industrial tree species. In both cases, harvest-
ing of plantation species is unlikely. Scrutinising the spatial
patterns of forest harvesting intensity and plantation species cover
clearly reveals that intensive monoculture plantations constitute
an important anthropogenic modification of forest ecosystems
(Hartley, 2002) and that such intensively managed forests are con-
centrated in a few regions in Europe (e.g., in the Mediterranean
countries, western France, and Romania, Fig. 4a). Plantation spe-
cies, which are typically managed with short rotation cycles (see
Text A.1 in the Supplementary material), are logically related to
high forest harvesting intensity, as their occurrence is often caused
by silvicultural measures with the intention of timber or biomass
production. Interestingly, these areas are often not intensely man-
aged with regard to our forest harvesting intensity measure, except
for a few areas in western France and northern Italy. In contrast,
high forest harvesting intensity occurred in Central and Eastern
Europe, Scandinavia, and the Baltic countries where plantation
coverage is low.
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Fig. 2. Relative importance of predictors for the static (solid triangles) and time-variant (boxplots) model. Time-variant variables are marked with an asterisk and were
averaged in the static model. In the time-variant model, one-year change ratios of the respective variables were used. Please refer to Table 1 for explanations of the variables.
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Fig. 3. Partial dependency plots (PDPs) for the eight most influential variables. The black, bold line represents the results from the static model, the dashed, grey lines the
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The second-most important variable in our model were coun-
try-specific differences in policies and socio-economics, captured
by the country dummy. The influence of country-specific charac-
teristics varies from predicted forest harvesting intensity of 40%
in Italy to almost 120% in Ireland. High values of predicted forest
harvesting intensity suggest that other predictors did not capture
country-specific information. For example, in Ireland, Sitka spruce
(Picea sitchensis) is an important forestry species (Department of
Agriculture Food & the Marine, s.a.). However, the tree species
map (Brus et al., 2012) does not distinguish between different
spruce species (Picea spp.). Generally, country specific characteris-
tics can capture differences in forest legislations and policies,
traditions in forestry, differences in forest ownership structure,

forest definitions, or fire and storm events, which all strongly shape
forest harvesting intensity but could not be explicitly derived as
explanatory variables.

Terrain ruggedness was the third-most important variable and
forest harvesting intensity decreased with increasing ruggedness.
Forest harvesting intensity was only half for regions with high
relief energy, particularly for regions exceeding a ruggedness of
20 m. Strong ruggedness arguably limits forest harvesting intensity
because costs of timber extraction increase (Simdes and Fenner,
2010; Hengeveld et al., 2012). The fourth-most important variable
was the total volume of growing stock and forest harvesting inten-
sity increased with increasing biomass availability (Hengeveld
et al., 2012). However, regions with less than 50 m3/ha show
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Fig. 4. Overlay map of forest harvesting intensity and plantation cover (a) and pine and spruce cover (b). All three variables were z-transformed for comparability. Bright blue
colours indicate high tree species (plantation, pine and spruce) coverage, bright red colours indicate high forest harvesting intensity, white indicates low values for both plot
variables, and black indicates high values for both plot variables. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

decreasing forest harvesting intensity with increasing growing
stock volume, which may be due to low productivity or low or frag-
mented forest cover.

Forest cover was the fifth-most important variable and low
forest cover co-occurred with lower predicted forest harvesting
intensity. The explanation for this is straightforward since inten-
sive harvesting can be done most efficiently in large forest patches
(Hengeveld et al., 2012). The sixth-most important variable was
accessibility. Our results showed an initial increase of forest
harvesting intensity with increasing travel time to cities until it
peaked at a travel distance of 60-90 min. Beyond this point, har-
vesting intensity decreased and finally levelled off at a distance
of approximately 240 min. A reason for this hump-shaped relation-
ship between accessibility and forest harvesting intensity could be
that forests close to urban areas may have other functions (e.g.,
recreation), which could reduce logging activities in these areas
(van Berkel and Verburg, 2011), thus providing support for the
importance of urban-hinterland teleconnections (Seto et al,
2012). Another reason might be the negative impacts of transport
systems. Large forest industry facilities require many transport
movements, which are not wanted in or close to urban areas. Fur-
thermore, a shortage of resources (more agricutlural areas in the
vicinity of cities) and environmental impacts (e.g., odours from
pulp and paper mills) may prevent high intensive use of forests
near urban areas.

Long-rotation coniferous species (rank 7) and jobless ratio (rank
8) contributed only marginally to explaining forest harvesting
intensity patterns. Forest harvesting intensity is almost stable
along the data range of coniferous tree species cover with
predicted values around 60%. This well reflects the approximate
average forest harvesting intensity across Europe (see Section 1)
and high pine and spruce cover goes along with medium to high
forest harvesting intensity (e.g., in Central Europe, Scandinavia,

and the Baltic countries, Fig. 4b). However, it has to be considered
that our differentiation between plantation species and pine and
spruce bases on rotation length. Pine and spruce can be interpreted
as plantation species as well since they replaced broadleaved for-
ests as Europe’s natural forest type due to afforestation practices
in the past (Bengtsson et al., 2000). With increasing jobless ratio,
a slight increase in predicted forest harvesting intensity was obser-
vable with a peak around 10%.

3.4. Variable importance in the time-variant models

We used one-year change ratios and time lags for the time-var-
iant models. Increasing the temporal delay reduced our time series
due to data constraints and - when applied - did not improve
model results (results not shown). Relative importance of predictor
variables and their ranking in the time-variant models were in
close agreement to the static model results described in Section 3.3
(see also Table A.5). Variable rankings were also quite constant
over time with an average Kendall tau of 0.758 between years
(SD =0.068). Even though the overall model fit did not improve
with the consideration of time-variant variables, augmenting the
static model with temporal information was essential to investi-
gate effects of socio-economic and natural events on forest har-
vesting intensity.

Time-lagged forest harvesting intensity (FAOintens’) was signif-
icant and fairly stationary over time, likely because transportation
networks as well as wood-processing facilities are also relatively
static over longer time periods. Hence, forest harvesting intensity
in a particular year is a meaningful predictor of forest harvesting
intensity in the subsequent year (see Fig. 2). Furthermore, unem-
ployment ratios were important in the beginning of the study per-
iod (2000-2002) but showed only marginal influence in the end of
the study period (2008-2010). The decrease in relative importance
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towards the end of the study period could be due to the economic
situation deteriorating after the financial crisis in 2008 in many
regions.

Most of the variables varied most strongly in and around the
year 2006. Static variables dropped in importance whereas some
socioeconomic variables drastically gained importance. For exam-
ple, the influence of the time-lagged forest harvesting intensity
peaked in 2006 with a relative contribution of almost 20% (other
years: 0.86-8.06%) and thus outperforming all other predictors
(Table 3). Furthermore, regional changes in the primary sector la-
bour force were important in 2006 to explain forest harvesting
intensity. This is not surprising considering the need for labour
to clear the wind throws of the previous year. As stated in Sec-
tion 3.2, the exceptionally low model performance in 2006 (see
Table 2) could be caused by storm Gudrun in 2005 with subse-
quent salvage logging providing a more than adequate amount
of timber, which can be the reason for strongly decreasing forest
harvesting intensity in 2006. In fact, 2006 is the only year in
our time series, which shows a strong deviation from the general
forest harvesting intensity patterns (see Fig. A.1). Hence, only the
time-lagged forest harvesting intensity could - to some degree —
capture this exceptional behaviour. However, it has to be consid-
ered that other major storm events occurred during or shortly be-
fore the study period, e.g., Lothar in 1999, Kyrill in 2007, and
Klaus in 2009, which all appear to not have exceptionally influ-
enced forest management schemes and related forest harvesting
intensity.

Both, the static and time-variant approach revealed that the
four most important spatial determinants of forest harvesting
intensity (share of plantation species, country-specific characteris-
tics, terrain ruggedness, and growing stock) also occurred most of-
ten as interaction partners (Table A.6). Generally, time-variant
predictors were only important in certain years, except the jobless
ratio and time-lagged forest harvesting intensity. We detected
strong interactions between plantation species cover and coun-
try-specific characteristics as well as terrain ruggedness.

Table 3
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4. Discussion and conclusion

Although the importance of forest management intensity to ad-
dress sustained yield has been recognised long ago (von Carlowitz,
1713), quantitative, broad-scale assessments of the drivers and
spatial patterns of forest management intensity have been missing.
Here, we derived forest harvesting intensity patterns as one indica-
tor for forest management intensity for all of Europe using, a sys-
tem metrics relating the outputs from forestry (i.e., harvests) to
ecosystem productivity (i.e., net increment). This allowed us to
make forest harvesting intensity comparable across large regions
characterised by strong environmental gradients and subsequently
to quantify the most important spatial determinants of harvesting
intensity at sub-national level. The main conclusions from our
analyses and results were:

1. Forest harvesting intensity is distributed unevenly across Eur-
ope and harvested timber volumes were mostly well below
the increment, thus indicating the potential for sustainable
intensification in timber yields.

2. Forest harvesting intensity was well explained by forest-
resource related variables (i.e., share of plantation species,
growing stock), topography (i.e., terrain ruggedness), and coun-
try-specific characteristics.

3. Forest harvesting intensity and some of its predictors exhibit
strongly non-linear relationships, sometimes characterised by
thresholds. Identifying and understanding such relationships
is important for designing and implementing effective sustain-
able forest management policies.

The spatial patterns of forest harvesting intensity showed
marked differences, likely due to regional management practices.
The hotspots of high forest harvesting intensity that we identified
were mainly within traditional wood producing countries or
regions such as Sweden, Finland, or southwest France. By using
an intensity measure instead of harvested timber volumes alone,

Relative importance of single predictors for the static and time-variant models. Data was missing for GDP PPS’, GVAprim", and LABOURprim" for 2010. FAOQintens’ could not be

incorporated in the static model since it does not have an average over the study period.

Predictors Year

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Static
Static
PLANTATION 28.87 26.35 16.87 16.51 14.98 13.94 24.28 30.09 38.43 34.96 24.41
COUNTRY 12.17 14.47 20.54 15.24 20.17 4.40 23.26 11.16 9.29 15.66 13.69
RUGG 1591 21.50 19.00 12.61 9.12 14.56 9.06 10.59 9.70 10.04 13.48
TOTVOL 5.13 5.34 8.34 7.15 5.88 13.93 6.48 8.73 6.69 5.19 9.35
FCov 4.31 4.30 5.95 1042 6.61 13.36 5.10 8.15 4.05 2.65 6.51
ACC50 4.32 443 6.34 7.88 6.53 3.94 4.73 7.74 4.66 5.88 531
PINESPRUCE 5.69 4.71 4.06 4.41 5.22 1.72 6.44 7.33 9.14 7.56 5.20
TEMP 2.30 1.51 2.27 5.41 4.29 2.93 1.72 2.98 4.39 4.56 3.39
POORSOIL 2.00 1.59 1.73 1.94 1.41 0.44 243 1.49 0.86 1.85 1.77
PRCP5M 1.32 1.78 1.75 1.87 1.54 0.44 1.12 1.06 1.02 1.61 1.77
PRIVFOR 2.14 1.28 1.26 1.09 0.83 0.27 0.94 0.81 1.06 1.72 1.54
WATSHORT 0.91 1.15 1.85 1.56 1.32 0.25 0.62 1.07 0.87 1.63 1.19
BEECHOAK 0.66 0.64 1.06 1.56 1.97 0.49 0.73 0.87 0.61 1.05 0.96
TOTPROT 0.85 1.00 1.00 1.07 0.85 0.21 0.52 0.90 0.50 0.61 0.90
SBC 1.00 0.79 0.67 1.10 1.66 291 1.00 0.86 0.57 0.81 0.87
URBRUR 0.57 0.51 0.59 0.83 0.43 0.15 0.29 0.35 0.40 0.43 0.48
Dynamic
FAOintens’ 2.86 0.86 2.59 3.96 8.06 18.35 5.72 3.23 4.30 3.58 NA
JOBLESS” 6.63 4.79 1.27 2.34 2.12 2.34 2.50 0.76 0.84 0.04 4.86
GDP PPS’ 0.75 0.72 0.56 0.49 2.04 0.21 0.83 0.48 0.31 NA 1.59
GVAprim’ 0.58 1.26 0.71 0.88 1.83 0.27 1.06 0.79 1.79 NA 141
LABOURprim’ 0.80 0.96 1.54 1.48 1.96 4.83 1.07 0.52 0.45 NA 1.28
oIL’ 0.19 0.05 0.05 0.19 1.16 0.06 0.08 0.04 0.07 0.15 0.05
TIMBER' 0.05 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00
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we avoided potential bias in assessing forest harvesting intensity
by controlling for differences induced by forest productivity. Our
study clearly shows the strong differences that exist between spa-
tial patterns of harvested timber volumes and forest harvesting
intensity, emphasising that assessing timber volume alone may
only reveal limited information on management intensity. Despite
being a quite simple index, forest harvesting intensity is one of the
key indicators to assess sustainable forest management at the
European scale. However, to address forest management intensity
in an integrated way, further information on harvest frequency,
size of production units, tree species selection, harvesting systems,
or intensity and frequency of thinning and tending (Schall and
Ammer, 2013) would have been useful but were not available
due to the lack of data.

Generally, we found harvested timber volumes in Europe’s for-
ests to be substantially lower than the net annual increment (Eur-
ope-wide approximately 60-65%), resulting in increasing forest
growing stocks (Ciais et al., 2008; Forest Europe and UNECE FAO,
2011). Aiming for sustainable use of forest resources, forest har-
vesting should not get close to or even exceed the annual incre-
ment of forests in the long run. Hence, results suggest, that many
regions may thus have the capacity for future intensification of
timber extraction without compromising the long-term sustain-
ability in terms of wood yield. We caution though that a systemic
view and a wide range of indicators should be considered to judge
about the overall sustainability of forest management, including
the consideration of biodiversity, biogeochemical, and social indi-
cators. Moreover, even intensification at levels well below incre-
ment can have strong negative environmental outcomes. Our
analyses also highlighted a few regions where harvested timber
volumes exceeded the annual increment, which is in line with re-
cent findings of the weakening forest carbon sink strength in Eur-
ope, partly because of increasing management intensity (Nabuurs
et al., 2013). Harvested timber volumes above the increment can
indicate the exploitation of old forests with slower growth rates
or a lack of proper management in previous years resulting in short
term exceedances. Such trends would, if continued over longer
time periods, indicate unsustainable forest use. It is noteworthy
to mention that at the national level, harvested timber volumes
did not exceed the increment in any of the EU27 countries in
2010 (Forest Europe and UNECE FAO, 2011), whereas our results
provide a more nuanced picture pinpointing intensely harvested
regions.

Our analyses suggest that the share of plantation species, coun-
try-specific characteristics, terrain ruggedness, and growing stock
were the most important spatial determinants of forest harvesting
intensity. Both regression models we used revealed similar
rankings of these predictors hence indicating the stability of our
models. Static determinants were generally more important than
time-variant ones. A possible explanation for this is that forest har-
vesting intensity generally depends on long-term environmental
and socioeconomic conditions rather than year-to-year changes
in such factors given relatively long rotation lengths in forestry.
Further reasons could be that much of the information of time-var-
iant socioeconomic variables has been absorbed by country
specific characteristics as well as the lower data quality of time-
variant predictors. For example, we did not have access to regio-
nal-level, annual timber prices and used an approximation using
national-level price information on imported and exported round-
wood. This is especially unfortunate since timber prices were ex-
pected to be an important driver of forest harvesting intensity
(Beach et al., 2005). Hence, we assume that the coarse resolution
and rough estimation of timber prices may mask their actual
importance on forest harvesting intensity.

The identified spatial determinants of forest harvesting inten-
sity differed in several aspects from prior, mainly fine-scale studies

investigating the drivers of harvested timber volumes. Prior studies
mainly found productivity-related variables to be important (e.g.,
Beach et al., 2005). An initial analysis revealed that productivity
(i.e., net annual increment) was also the most important variable
for explaining harvested timber volumes in our study region and
model performance of analysing harvested volumes was even
higher compared to analysing timber harvesting intensity (results
not shown). However, using productivity as a predictor neither al-
lows for assessing forest harvesting intensity, nor for identifying
important influential drivers of harvesting which remain masked
when not controlling for forest productivity. This again underlines
the importance of using intensity metrics that consider system
properties to analyse forest harvesting intensity. Comparing our
intensity map with the only prior, yet qualitative assessment of
forest management intensity on subnational level in Europe
(Hengeveld et al., 2012) suggest overall good agreement between
these maps. For example, both analyses highlight intensive areas
especially in southern Sweden, southern Finland, and southwest
France. Whereas the expert-based approach is static, susceptible
to personal judgement in the selection of factors, and maps only
potential forest management intensity, our approach incorporates
time-variant information, identifies the most influential predictors,
and addresses forest harvesting intensity explicitly.

A major finding from our study was that the relationship be-
tween forest harvesting intensity and predictor variables was
sometimes highly non-linear and characterised by threshold-type
responses. Such nonlinearity is characteristic for complex socio-
ecological systems (Scheffer et al., 2012; Dearing et al., 2010) and
emphasise the value of non-parametric statistical approaches.
These tools can better uncover and visualise such relationships
compared to traditional linear regression models, which have com-
monly been used. Here, we show that such thresholds may also ex-
ist for forestry systems at broad scales (e.g., for plantation species
cover and accessibility in our case, Fig. 3). Because non-linearity in
socio-ecological systems can result in surprising and sometimes
irreversible outcomes, identifying and understanding non-linearity
is important for sustainable resource management (Folke, 2006).

Our boosted regression tree models explained the variation of
forest harvesting intensity well (up to 55% of the with-held varia-
tion) and resulted in plausible response curves and robust models
without indication of overfitting. The explanatory power of our
models was also substantially higher than in previous studies. Nev-
ertheless, a few factors may explain remaining uncertainty. First,
data constraints arguably prevented an even higher explanatory
power of our models. For example, no data to capture the diversity
of decision-making actors (national management plans, NGOs, nat-
ure protection organisations, companies, individuals) were avail-
able to us, although this should partly be captured by the
country dummy. Furthermore, property size, despite being identi-
fied as an important determinant of harvesting on the local scale,
could not be incorporated because such data are not readily avail-
able at the pan-European scale. The distance to wood processing
units, such as pulp or saw mills, from harvesting sites likely influ-
ences forest harvesting intensity as it affects the procurement
costs. Unfortunately, freely available, consistent, complete, and
spatially-explicit datasets of processing unit locations are currently
not available for all of Europe. It is noteworthy, that our market
accessibility variable would likely be highly correlated with a pro-
cessing unit accessibility variable. Duncker et al. (2012) suggest
twelve major factors to characterise forest management intensity,
yet not all of these factors could be represented in our dataset (e.g.,
we had no spatially explicit data on application of fertiliser or
pesticides, machinery, or soil cultivation). Furthermore, rapid
changes in forest management in response to storm events were
only incorporated via our time-lagged forest harvesting intensity,
and spatially explicit data on wind throws would have further
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improved our models. Second, some uncertainty remains due to
different national forest harvesting reporting schemes, which
may have led to bias in the target variable, even though we con-
trolled for these differences by harmonising the data (see Sec-
tion 2.1.1). Third, issues of scale cannot be ruled out for regions
with a small share of forests, where uncertainty in forest harvest-
ing values may lead to high intensity values (e.g., Northern Italy,
see Fig. 1a). Fourth, we used the most recent estimates of industrial
roundwood and fuelwood (FAOSTAT, 2012) but this may exclude
some unrecorded wood removals. Steierer (2010) found that, at
the European level, 27 million m? or 4% of the total wood supply
(forests, outside forests, and industry) was unrecorded. Further-
more, illegal logging activities mainly taking place in Eastern Eur-
ope (Knorn et al., 2012; WWEF, 2007) could not be accounted for in
our target variable. Thus, officially available data may underesti-
mate real harvested timber volumes locally and thus forest har-
vesting intensity. Fifth, the time period we analysed is relatively
short compared to average rotation lengths of tree species used
for harvesting. Ultimately, we could not quantify uncertainty intro-
duced by the use of different data sets since not all predictors used
in this analysis were or even can be validated. We selected the, to
our knowledge, best products available that served our thematic
(hypothesised influence on forest harvesting intensity) and techni-
cal requirements (pan-European coverage, NUTS-level or 1 km?
spatial resolution). While some of the spatial datasets used in
our study were validated (e.g., the forest extent map), statistical
data is generally collected and provided without uncertainty
estimates.

Fostering more sustainable forest use in light of the growing de-
mands for timber products is a grand challenge and ensuring that
future intensification of forest management is sustainable would
require considering a range of indicators that address the different
facets of forest management intensity. Duly considering the multi-
dimensionality of sustainable forest management appears particu-
larly important considering the potentially non-linear responses
we found. Our results have several practical implications for policy
makers seeking to balance forest resource use and the conservation
of forest ecosystems and biodiversity. First, the bulk of regions in
Europe we investigated in this study were characterised by forest
harvesting intensities well below the increment, indicating poten-
tial for increasing timber yields through intensification. Hence,
sustainable intensification may be possible for many regions in
Europe in regards to a key indicator: forest harvesting intensity
as the ratio of harvested timber to increment volumes. Second,
our results suggest that increasing outputs from forestry may be
conceivable without altering tree species composition or introduc-
tion of new plantation areas, a management practice known to be
generally harmful for local biodiversity (Brockerhoff et al., 2008).
For example, existing stands could be managed more intensely,
especially in Central Europe, although this may lead to increased
carbon emissions, biodiversity loss, the reduction of the carbon
sink from current forest ecosystems, and degraded forest recrea-
tional values due to altered stand naturalness and age structure
(Edwards et al., 2010). Third, future policies could focus on extend-
ing plantation areas or improving infrastructural accessibility in
important timber-producing regions to lower pressure for intensi-
fication in other areas. In that way, such analyses can help identi-
fying sustainable solutions by supporting management decisions
and landscape architecture (Turner et al.,, 2013). Fourth, though
the majority of the most important spatial determinants of inten-
sity patterns found in our study were static and cannot easily be
changed (e.g., terrain ruggedness, growing stock, forest cover,
infrastructure), the two most important determinants we identi-
fied provide levers to policy makers and land use planners: planta-
tion species cover and country specific characteristics. Knowing
that high forest harvesting intensity relates to high planation share

offers action space to modify existing forest management. For
example, regions with a large cover of plantation species (espe-
cially the Mediterranean countries and western France) could be
managed more intensely while considering issues related to biodi-
versity, environment, and society. Furthermore, a multitude of
country specific characteristics, for example forest legislation, pol-
icies, or subsidies, promise prospects to influence forest harvesting
intensity.

A better understanding of the spatial patterns of forest harvest-
ing intensity and the drivers that produce these patterns are
important for understanding the trade-offs between forestry and
conservation, and thus ultimately to implement more sustainable
forestry systems. Here, we investigated spatial determinants of
continental-scale forestry harvesting intensity patterns. We high-
light the potential of such analyses to provide insights beyond tra-
ditional studies on harvested timber volumes alone and to identify
candidate regions and potential levers to sustainable intensifica-
tion of forestry. Similar to agricultural systems, the question
whether to intensify forest use and conservation in a land sparing
approach or to integrate forest use and conservation goals in land
sharing landscapes becomes an important question for land use
and conservation planners (Tscharntke et al., 2012; Edwards
et al., 2013). Clearly, there is no silver bullet to this question, but
regional-scale analyses such as ours are an important prerequisite
to better understanding where and which strategy could be imple-
mented and what the potential benefits and trade-offs of both
strategies are. Our continental-scale study provides a starting point
for investigating global forest harvesting intensity. To achieve this,
it would be interesting to compare our results with those from
studies from other world regions. Finally, our study highlights
the value of non-parametric approaches to provide new insights
into the determinants of forestry intensity and the usefulness of
such analysis to inform forest managers, land use planners, and
conservation agencies concerned with the spatial targeting of for-
est policies or investments.
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