
at SciVerse ScienceDirect

Journal of Environmental Management 114 (2013) 276e284
Contents lists available
Journal of Environmental Management

journal homepage: www.elsevier .com/locate/ jenvman
Reserve selection with land market feedbacks

Van Butsic a,b,c,*, David J. Lewis d, Volker C. Radeloff a

aUniversity of Wisconsin Madison, Department of Forest and Wildlife Ecology, 1630 Linden Drive, Madison, WI 53706, USA
bHumboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
c Leibniz Institute of Agricultural Development in Central and Eastern Europe, Theodor-Lieser-Str. 2, D-06120 Halle, Germany
dUniversity of Puget Sound, Department of Economics, 1500 N. Warner, Tacoma, WA 98416, USA
a r t i c l e i n f o

Article history:
Received 13 January 2012
Received in revised form
14 September 2012
Accepted 9 October 2012
Available online 9 November 2012

Keywords:
Reserve selection
Heuristic algorithm
Land-market feedbacks
Conservation spending
* Corresponding author. University of Puget Sound
1500 N. Warner, Tacoma, WA 98416, USA.

E-mail address: vanbutsic@gmail.com (V. Butsic).

0301-4797/$ e see front matter � 2012 Elsevier Ltd.
http://dx.doi.org/10.1016/j.jenvman.2012.10.018
a b s t r a c t

How to best site reserves is a leading question for conservation biologists. Recently, reserve selection has
emphasized efficient conservation: maximizing conservation goals given the reality of limited conser-
vation budgets, and this work indicates that land market can potentially undermine the conservation
benefits of reserves by increasing property values and development probabilities near reserves. Here we
propose a reserve selection methodology which optimizes conservation given both a budget constraint
and land market feedbacks by using a combination of econometric models along with stochastic dynamic
programming. We show that amenity based feedbacks can be accounted for in optimal reserve selection
by choosing property price and land development models which exogenously estimate the effects of
reserve establishment. In our empirical example, we use previously estimated models of land devel-
opment and property prices to select parcels to maximize coarse woody debris along 16 lakes in Vilas
County, WI, USA. Using each lake as an independent experiment, we find that including land market
feedbacks in the reserve selection algorithm has only small effects on conservation efficacy. Likewise, we
find that in our setting heuristic (minloss and maxgain) algorithms perform nearly as well as the optimal
selection strategy. We emphasize that land market feedbacks can be included in optimal reserve
selection; the extent to which this improves reserve placement will likely vary across landscapes.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Land use change is the leading cause of habitat and biodiversity
loss globally (MA, 2005). Currently, over 83% of the terrestrial
surface of the earth has been influenced by humans and this
number is expected to increase (Sanderson et al., 2002; Foley et al.,
2005). Reserves act as refuges for biodiversity by preventing
anthropogenic change in areas of particularly high conservation
value. Land market feedbacks, however, may undermine the ability
of reserves to protect ecosystems by increasing returns to unde-
veloped lands that neighbor reserves (McConnell and Walls, 2005;
Armsworth et al., 2006; Tóth et al., 2011), potentially leading to
increased development in previously unprotected but also undis-
turbed areas. Effective conservation in a dynamic world therefore
requires developing conservation planningmethods which account
for land market feedbacks.
, Department of Economics,

All rights reserved.
Historically, reserve selection focused primarily on maximizing
the ecological benefits of establishing reserves, while minimizing
reserve size (Williams et al., 2005; Moilanen et al., 2009). This
selection strategy led to spatially efficient reserves, but is of
somewhat limited relevance for public policy due to limited
information on conservation costs. Lately, there has been increased
research on the role land markets play in efficiently establishing
reserves with much attention focused on to how to best select
reserves while facing a budget constraint (Ando et al., 1998;
Costello and Polasky, 2004; Armsworth et al., 2006; Wilson et al.,
2006; Underwood et al., 2008; see Arponen et al., 2010 for
a critique of this approach). This research has called for reserve
selection strategies that address three important components of
land markets: land costs, development threat, and feedbacks
between reserve establishment and future land costs and devel-
opment threats.

Land markets potentially undermine conservation goals
through equilibrium and partial-equilibrium feedbacks (Berck and
Bentley, 1997; Armsworth et al., 2006). Partial equilibrium land
market feedbacks take place when any location-specific charac-
teristic that determines the market value of a parcel is influenced
by actions on neighboring parcels. For example, purchasing
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Table 1
Land market feedbacks.

Type of effect Market mechanisms Scale of feedback Estimating feedback

Equilibrium effect 1. Increased demand for non-developed land by
conservation groups shifts demand outward,
leading to more undeveloped land being
traded in the market (Armsworth et al., 2006)
at a higher price.

2. Conversion of land from agriculture or forestry
to reserves can decrease the supply of commodities.
This has the usual long run effect of increasing prices
for commodities, leading to more potential land
conversions as new entrants seek the now higher
returns to extractive uses (Berck and Bentley, 1997;
Jantke and Schneider, 2011).

Feedbacks occur when land purchases are large
enough to shift the demand curve or significantly
reduce the supply of commodities. Empirically,
there is evidence that supply side restrictions in
forestry have had large price effects (Berck and
Bentley, 1997) when over 20% of timber supply is
protected. There is less evidence for agricultural
shifts; modeling exercises have explored effects
at the scale of 5e30 million ha of protection
(Jantke and Schneider, 2011).

Equilibrium land market effects
can be calculated directly by
estimating the price elasticity
of land supply and land rents,
or indirectly by estimating the own
price elasticities of land based
commodities (Armsworth et al., 2006;
Jantke and Schneider, 2011;
Tóth et al., 2011).

Partial Equilibrium
(Amenity) effect

Reserve establishment typically increases the amenity
value of land. This generally increases the value of
housing relative to agriculture or forestry, increasing
future purchase prices and threat levels
(Wu and Plantinga, 2003; Lewis et al., 2009).

Amenity effects may increase prices of land adjacent
to even small reserves. Amenity effects are likely
also present for very large purchases
(McConnell and Walls, 2005). This amenity effect
is often constrained to parcels very near the amenity.

Hedonic estimates of land prices,
and discrete choice models of land
development can be used to estimate
land market feedbacks, given that the
endogenous nature of reserve
establishment is accounted for
(Lewis et al., 2009).
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a reserve may increase the returns to developing neighboring land
by generating an amenity value (see McConnell andWalls, 2005 for
a review of this literature). Reserve establishment may also have
equilibrium effects on the land market through either a reduction
in the supply of land-based commodities such as crops or timber, or
through an increase in the demand for undeveloped land by
conservation organizations, both of which raise prices for unde-
veloped land. Equilibrium and partial equilibrium feedbacks can
increase both the cost of purchasing neighboring lands, along with
increasing the threat that neighboring lands develop, which can
potentially undermine the conservation gains of reserve estab-
lishment (Table 1, Armsworth et al., 2006; Jantke and Schneider,
2011; Tóth et al., 2011).

While there is strong theoretical evidence that land market
feedbacks may undermine conservation, there is scant empirical
evidence confirming the importance of these dynamics in real
world settings. Indeed, most reserve selection strategies that
account for both cost and threat (Costello and Polasky, 2004;
Wilson et al., 2006; Newburn and Berck, 2006; Moilanen and
Cabeza, 2007; Spring et al., 2007) ignore land market feedbacks.
This is likely due to the difficulty in estimating land market feed-
backs from commonly used threat and cost data. In order to
calculate the effect of land market feedbacks, cost and threat esti-
mates must themselves be functions of reserve establishment and
land development, and must be dynamically updated throughout
the selection algorithm in order to reflect changing states of the
landscape. Lacking such estimates, the effect of land market feed-
backs on reserve selection has remained primarily of theoretical
importance, and conservation practitioners have been given little
guidance as to the extent to which these feedbacks may undermine
their efforts.

Estimating the partial equilibrium effects of reserve establish-
ment on land prices and development is complicated by the non-
random application of reserve status, which can result in selec-
tion bias (Andam et al., 2008; Butsic et al., 2011; Carrion-Flores and
Irwin, 2010). Such selection bias can occur if there are differences in
the distributions of covariates inside and outside of the reserve
(selection on observables), or if unobserved correlation exists
between reserve establishments, land characteristics, and land
markets (selection on unobservables (Cameron and Trivedi, 2005;
Ch. 25)). For example, land near reserves often demands a premium
price. Statistically, however, it can be difficult to separate the price
effects of reserve establishment from the price effects of other
amenity values which may impact land prices even in the absence
of a reserve. For example, reserves are often located in scenic
landscapes, and property in this landscape can command
a premium due to both the reserve and the scenery. Since scenery is
difficult to quantify, its lack of measurement confounds the esti-
mation of reserves on prices and development threat. In order to
estimate land market feedbacks, one must separately identify the
effects of reserves on land prices and development threat from the
effects of correlated unobservables such as scenery.

Recent advances in econometrics have increased our ability to
estimate the effects of reserve establishment. In certain settings,
reserve establishment can be argued to be uncorrelated with
unobserved land market attributes and such “quasi-experi-
mental” data can be used to estimate the effect of reserve
establishment (Spalatro and Provencher, 2001; Lewis et al., 2009;
Horsch and Lewis, 2009). In other locations, where selection bias
arises from observable variables, explicitly modeling the reserve
sighting process through propensity score matching or regres-
sion discontinuity analysis has been an effective strategy to
correct for selection bias (Bento et al., 2007; Andam et al., 2008;
Butsic et al., 2011). Likewise, when selection bias arises through
correlated unobservable land characteristics, methods such as
full information maximum likelihood estimation have been used
to account for selection bias (Lewis et al., 2009; Butsic et al.,
2011). Here we take advantage of these advances in modeling
land markets to integrate consistently estimated effects of
reserve establishment and development density into the reserve
selection problem, allowing us to account for land market feed-
backs. Even when land market feedbacks are accounted for,
incorporating land cost and development threat into reserve
selection remains challenging (Costello and Polasky, 2004). Cost
and conservation threat are usually correlated (Wilson et al.,
2006), and that means that it is not clear a priori whether
limited conservation funds should be concentrated on inexpen-
sive land that has a low probability of development, or parcels
that are severely threatened but also expensive. Stochastic
dynamic programming and mixed integer programming can be
used to solve the reserve selection problem if costs and threat
levels are known (Costello and Polasky, 2004; Wilson et al.,
2006), although empirical examples are rare (but see Haight
et al., 2005; Tóth et al., 2011). Likewise although the validity of
heuristics in such settings has been discussed theoretically
(Wilson et al., 2006; Carwardine et al., 2010), there are relatively
few real world test where optimal outcomes can be compared to
heuristics over multiple trials.
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Here we fully embed land market dynamics (feedbacks, costs,
and threats) into an optimal reserve selection strategy. Our paper
has four main objectives. First, we demonstrate a method of reserve
selection which accounts for partial equilibrium land market
feedbacks in addition to costs and threats. Second, we test the
importance of including land market feedbacks in an empirical
reserve selection setting. Third, we test the performance of
heuristic algorithms vs. the optimal reserve selection strategy
when costs and threat levels are known over multiple empirical
trials. Finally, we test the effectiveness of a conservation program to
preserve an important indicator of ecosystem function e coarse
woody debris (CWD) e in a rapidly developing land market.

2. Methods

2.1. Study area

Our study area was Vilas County in northern Wisconsin, an area
typical of quickly developing amenity rich rural landscapes. The
county has a population of just over 20,000 and covers over 850
square miles (U.S. Census, 2012). The county has long been
a bastion for second home development due to its 1300 lakes. Since
1960, over half of all newhomes have been built on parcels adjacent
to a lake (Schnaiberg et al., 2002). The dense development along
some lakes has led to a host of ecosystem changes including:
decreased growth rates for bluegills (Schindler et al., 2000) and
largemouth bass (Gaeta et al., 2011), decreased amounts of coarse
woody debris in the littoral zone (Christensen et al., 1996),
amphibian extirpation (Woodford and Meyer, 2003), and exotic
invasion (Carpenter et al., 2007).

Vilas County has predominantly relied on zoning to control
housing growth, and its effects on property prices and development
density have been modest (Spalatro and Provencher, 2001; Horsch
and Lewis, 2009; Lewis et al., 2009). Recently, local and national
land trusts, along with the state government have begun to
purchase private land for conservation. Between 2004 and 2007,
the Nature Conservancy, with joint funding from the State of
Wisconsin’s KnowleseNelson Stewardship Fund, purchased over
3000 acres in Vilas County at a cost of over $4,000,000 (State of
Wisconsin, 2007). In addition, a local land trust e Northwoods
Land Trust e has been actively acquiring properties in the County
(Northwoods Land Trust, 2010).

We conducted our study on 16 lakes. These lakes were chosen
because they had been analyzed previously in the land develop-
ment (Lewis et al., 2009) and hedonic (Horsch and Lewis, 2009)
property value models and contained a feasible number of devel-
opable parcels to apply SDP (2e7 parcels). The lakes represented
a gradient of size and existing development densities (Table 2). On
average, a parcel in our dataset could subdivide into 8 new parcels
given local zoning laws.

2.2. Program description and reserve selection algorithms

We simulated a conservation program which established
reserves over a 16 year time period e represented by four, 4-year
time steps e by purchasing private land. The objective of the
Table 2
Selected summary statistics for lakes used in study.

Average Min Max St. dev

# of parcels 44.43 7 131 31.759
Depth (ft) 32.98 13 80 17.41
Size (acres) 138.90 15 555 121.29
% Protected land 8 0 80 21
Development density (parcels/per acre) 0.49 0.11 2.2 0.51
reserve selection was to maximize the amount of coarse woody
debris present at the end of the program given a budget constraint
of $500,000 per period. Changes in the budget did not change the
results qualitatively. It was not possible to borrow beyond the
budget, but any money left over at the end of each period earned
interest (5%) and could be used in subsequent time periods. Money
left over at the end of the program did not factor into the objective
function.

Parcels were in one of three states at the beginning of our
simulations: (1) developed parcels that were already built to the
maximum allowable density (i.e., zoning prohibits further subdi-
vision); (2) undeveloped parcels that could that subdivide further
(i.e., zoning allowed for more parcels to be created from the parent
parcel); and (3) protected parcels that were already owned by the
state or non-profit groups. Only undeveloped parcels could change
state, and they could either develop, be protected, or remain
undeveloped.When an undeveloped parcel was protected, only the
portion of the parcel absent of development was purchased. For
example, if a parcel has one residence but was large enough to
subdivide into a total of seven parcels, then it was possible to
purchase and protect the six additional parcels, but the existing
residence and a parcel equal to the minimum size allowed by
zoning remained in private ownership. In this way the conservation
program purchased private land but not existing structures.

We formulated the reserve site selection problem as a series of
decisions regarding which parcel(s) to protect over four time
periods. In each time period, conservation costs, expected devel-
opment threat, and the ecological benefit of each parcel were
known. We used stochastic dynamic programming (SDP) to solve
for the optimal sequential selection of reserves (Costello and
Polasky, 2004). The optimal policy gives the best action (which
parcel(s) to protect) in each period as a function of the current state
of the lake. Using SDPwewere able to select the parcel (or either no
or multiple parcels) in each period which resulted in the highest
expected CWD at the end of the 16 year planning horizon. SDP can
be challenging to implement due to the curse of dimensionality
(Wilson et al., 2006) and high data requirements. For example,
solving the SDP problem for a lake with seven developable lots took
over 20 h, while the heuristic algorithm took only minutes.
Therefore, we also implemented two common heuristic selection
algorithms e maxgain which in this case maximizes the amount of
shoreline purchased in each time period and is based on cost
estimates but not threat estimates, and minloss e which minimize
the amount of shoreline developed in each period by focusing
selection on the most threatened parcels (see Supporting
information for a mathematical treatment of SDP, maxgain and
minloss).

2.3. Input model no. 1 e hedonic model of land costs

Conservation costs were estimated using a hedonic model of
property values. Hedonic models use data on observed property
transactions in local land markets to measure the impact of char-
acteristics on property prices. The method is frequently used in
environmental and urban economics to analyze property markets
and to estimate households’ marginal willingness-to-pay for
changes in neighborhood attributes, such as air quality or protec-
tion from crime (see Kuminoff et al. (2010) for a review of issues in
this literature).

Conservation costs for our analysis were calculated from Horsch
and Lewis (2009). The model specified the contributions of various
parcel specific (assessed structure value, lot size, number of feet of
shoreline frontage, feet of frontage squared), lake specific (lake size,
distance to towns, lake clarity, depth, zoning regulations, devel-
opment density, fishing quality, and whether or not the lake has
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experienced exotic invasion from Eurasian water milfoil) and time
specific (captured through yearly time dummies) characteristics on
property prices using publically available data from county, state,
and federal sources (see Horsch and Lewis (2009) for more details).
The coefficients from this model were used to calculate the ex-
pected cost of purchasing undeveloped parcels, given a set of parcel
and lake characteristics. In this model protected land positively
affects the price of parcels through reducing development density.
Given that the impact of protected land in our setting is to limit
future development and therefore development density, we expect
this result to be somewhat weaker than elsewhere.
2.4. Input model no. 2 e land-use change model of the threat of
development

The threat (or probability) of development for each parcel along
with the expected number of new lots created in the event of
a subdivisionwas calculated using an econometric land-use change
model originally developed by Lewis et al. (2009). The model was
estimated with spatial data on historical parcel subdivisions from
1974 through 1998, whereby the development status of every
parcel across the landscape is tracked in four year intervals. Similar
parcel-level spatial data has been used in environmental and urban
economic analyses of urban sprawl (Irwin and Bockstael, 2002;
Carrion-Flores and Irwin, 2004), water quality effects of develop-
ment (Bockstael, 1996), and the effects of land-use planning on
development patterns (Newburn and Berck, 2006). Most models in
this literature generate estimated probabilities of parcel-level land-
use change as a function of the net economic returns to land, and
various parcel, local, or regional attributes.

Two land-use decisions were modeled in Lewis et al. (2009): (1)
a binary outcome of whether a parcel subdivided during each four-
year interval, and (2) the number of new parcels created upon
subdivision. These two decisions were jointly estimated with
a maximum simulated likelihood procedure. The resulting esti-
mates characterized the contribution of parcel specific (frontage,
frontage squared, soil type), lake specific (development density, %
protected land, water clarity, lake size, lake depth, distance to town
and zoning regulation), and time specific (dummy variables for
each panel) characteristics, along with a host of interactions, on the
probability a parcel would subdivide as well as howmany new lots
were created when a parcel subdivides. The main findings of the
model are that protected land increases threat level for some small
parcels but decreases threat level for many larger parcels. The effect
on large parcels is evidence that neighboring conserved land and
parcel size are land value complements e whereby owners are
willing to pay more for a marginal unit of parcel size when that
parcel is located near reserved land. For a full description and
interpretation of the data and model see Lewis et al. (2009).
2.5. Input model no. 3 e an ecological model of coarse woody
debris (CWD) in lakes

We coupled the land market models with an ecological model
which related CWD to housing density. CWD is an important link
between lakes and forest ecosystems in Northern Wisconsin,
promoting production of benthic invertebrates, and offering refuge
to prey fishes, which in turn are consumed by piscivorous fishes
(Roth et al., 2007). Christensen et al. (1996) modeled the amount of
CWD located along a given shoreline as a function of residential
density for 16 lakes located in Vilas County and the adjoining
county to the north, Gogebic County, Michigan.When analyzing the
mean CWD for each lake, the amount of CWD was significantly
negatively correlated with residential density (Christensen et al.,
1996). We applied the coefficients from this model to calculate
CWD on each lake under alternative development scenarios.

2.6. Land market feedbacks

In our setting, land market feedbacks were propagated through
two variables: (1) development density, defined as the total number
of parcels/lake size (i.e., developed þ undeveloped parcels/lake
size), which is influenced by reserve establishment and land
development over time; and (2) protected land, defined as the % of
shoreline owned by the government or non-profit organizations,
which is a direct measure of reserve establishment. Both variables
are calculated at the lake level.

Development density may be endogenous as it is a function of
past subdivision decisions which may be correlated with unob-
servable qualities of the lake or parcel. In the land use transition
model, Lewis et al. (2009) estimated the effects of development
density by including the state of each lake in 1974 as a proxy for
a lakes inherent desirability, along with the time-varying devel-
opment density on each lake during each four-year interval. This
econometric correction is similar to the MundlakeChamberlin
device (Mundlak, 1978) widely used in panel data models. In our
application, unobserved lake level heterogeneity is specified as
a function of past development level. We also included this variable
in a variant of the model used by Horsch and Lewis (2009) and
found no differences in the estimated results.

Protected area likewise may suffer from observable or unob-
servable selection bias since many protected areas are placed in
areas with unobserved characteristics that influence the develop-
ment potential of land. For example, conservation agencies in the
U.S. often conserve scenic landscapes which are also desirable for
development. In our study area, we exploit a unique historical
feature whereby public land is primarily abandoned farmland
which proved unprofitable after the area was harvested of its
timber. Most of this land was defaulted to the state from 1930 to
1950 (Flader, 1983) and thus its spatial distribution is unlikely to be
influenced by unobserved variables that likely affect current
property prices or transition probabilities.

2.7. Land use simulations and policy effects

To quantify the policy impacts of reserve establishment, along
with the uncertainty of these impacts, we integrated the results of
the SDP and heuristic algorithms into a land use simulation (Fig. 1).
The land use simulationwas run 1000 times to create a distribution
of realized landscapes. At the end of the simulations, the SDP,
heuristic, and baseline simulations were compared to calculate the
effect of the conservation program on the amount of CWD. We
calculated changes in mean and median CWD. Likewise we used
a two sided KolmogoroveSmirnov test to test for differences in the
shape and location of the distributions of the outcomes. The null
hypothesis is that both the shape and location of the distributions
are the same, rejecting the null hypothesis indicates that one or
both, the shape, or location differ.

To test for the effect of land market feedbacks, we ran the
simulation with development density and protected land at their
estimated values and compare these outcomes to simulations
where the effect of development density and protected land are not
updated throughout the simulation. We tested for differences in
means, medians, and the shape of the distribution between the full
model and the simulations that ignored land market feedbacks. We
also calculated the increased costs of land acquisition at the end of
the program due to reserve establishment by comparing the cost of
remaining parcels in the baseline simulation to the cost of the
parcels where reserves are established. Again we tested for



Fig. 1. A three parcel example of the landscape simulation methodology. 1. Each parcel is assigned to its state in 2006. Parcels that are undeveloped are assigned prices and
transition probabilities (threat levels) based on empirical models (Horsch and Lewis, 2009; Lewis et al., 2009). 2. Stochastic dynamic programming is used to choose which parcel
offers the highest expect benefit (CWD) at the end of the planning horizon given the state of the lake. 3. If the SDP determines that purchasing a parcel maximizes the expected
benefit a parcel is selected as a reserve. It is possible that the optimal decision is to select either zero, or more than one parcels in a given time period. 4. Neighboring prices and
threat levels are adjusted according to how the selection decision affects the state of the lake. 5. Random numbers from the unit interval are drawn for each developable parcel. If
the number is smaller than the threat level of the parcel, that parcel subdivides and a number of new lots develop. Otherwise the parcel stays undeveloped. 6. Price and threat levels
are updated based upon the new state of the lake. 7. Steps 3e6 are repeated until the end of the 16 year program. 8. Steps 3e7 are repeated 1000 times resulting in a distribution of
coarse woody debris (CWD). Steps 1e8 are repeated for 16 lakes across Vilas County, for two heuristic algorithms, and with threat and cost feedbacks equal to zero.
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differences between selection algorithms by comparing means,
medians, and the shape of the distribution of 1000 simulations.

3. Results

3.1. Baseline land development throughout the 16 year simulation

Under the baseline land use simulation, changes in residential
density are heterogeneous over the 16 lake sample. Residential
density increased by an average of 10.5% over the 16 year simula-
tion. The maximum density change was 46% and the minimum
change was 1.4%. These changes resulted in similarly heteroge-
neous decreases in CWD. On average, CWD decreased by 36% over
the 16 year simulation. Thus, under the baseline simulation both
the built and natural environment show marked changes.

3.2. CWD and development changes under the reserve program

The reserve program had heterogeneous effects on residential
density and CWD, regardless of selection strategy. Averaging over
all 16 lakes, the optimal selection strategy reduced residential
density by about 7% at the end of the program when compared to
the baseline. Mean CWD at the end of the 16 year simulation was
218.83 CWD/km when the program was in effect (under the SDP
1.                                                                    

3.                                                                    

5.                                                                   

Fig. 2. Changes in CWD and number of houses compared to baseline simulations. Graphs in
highest change to lowest change using the three selection methods compared to baseline sim
in the right column represent the percent change in new houses built over the 16 year simula
simulation for 2) the results using SDP, 4) the maxgain algorithm, and 6) the minloss algor
selection algorithm) compared to 210.71 CWD/km for the baseline
simulations, an increase of nearly 4%. The largest CWD increase due
to the reserve program was 38.05 CWD/km, and the largest
percentage increase in CWD due to the programwas a 28% increase
(Fig. 2).

3.3. The effect of threat feedbacks

We found that ignoring threat feedbacks (i.e., development
density and protected land are not updated) leads to only small
changes in landscape development, and hence CWD. Under the
baseline simulations the distribution of CWD does not differ
significantly when threat feedbacks are ignored. Ignoring threat
feedbacks lead to slightly higher (but statistically insignificant)
changes in CWD throughout the simulation for all 16 lakes. Pro-
tecting land increased threat levels to some small parcels, thus
increasing the probability of development and decreasing CWD. For
some larger parcels, however, threat level actually decreased as
reserves increased, reducing the overall impact of the threat level.
Thus, the overall results of the threat feedbacks were perhaps
muted by these off setting effects. We find similar results for all
three selection algorithms, indicating that establishing new
reserves has negligible effects on threat levels in our setting
(Table 3).
   2. 

   4.

    6.

the left column represent the percent change in CWD for all sixteen lakes ranked from
ulations for 1) the SDP, 3) the maxgain algorithm, and 5) the minloss algorithm. Graphs
tion ranked from highest to lowest for the selection methods compared to the baseline
ithm.



Table 3
Average difference between CWD in models with full feedbacks vs. models which
exclude feedbacks, with percentage change in italics.a The number of lakes in which
the distribution differs between the simulation with and without feedbacks is in
parenthesis.

No threat feedback No cost feedback

Least cost 0.13, 0.0006% (0) 0.21, 0.0010% (0)
Expected benefits �0.01, 0.0005% (0) 0.7, 0.0032% (0)
SDP �0.13, 0.0006% (1) �0.07, 0.0003% (0)
Baseline 0.09, 0.0004% (0) 0.04, 0.0002% (0)

a Average difference is calculated as average CWD for each lake with missing
feedbacks minus the average CWD for each lake using the full feedbacks.

Table 5
Number of lakes (out of 16) with significantly different distributions and maximum
average difference in CWD between algorithms using the KolmogoroveSmirnov
test. Upper off diagonal numbers are the number of lakes with significantly different
distributions of CWD (p < 0.05). Lower off diagonal is the maximum difference in
CWD.

Maxgain Minloss SDP Baseline

Maxgain 0 3 4 11
Minloss 1.4 0 4 11
SDP 0.91 1.47 0 11
Baseline 38.05 38.27 38.05 0
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3.4. The effect of cost feedbacks

The effects of ignoring cost feedbacks were small. We tested for
significance between the distribution of each algorithm and base-
line simulations under the competing feedback assumptions. We
found that in all cases the distribution of simulated results did not
differ significantly between simulations with and without cost
feedbacks (Table 2). Given that this is the case for the baseline
simulation and the simulations where reserves were established,
we concluded that land development and reserve establishment
had negligible effects on future land prices in this setting. The cost
feedbacks did increase the costs of purchasing land in the future. In
general, however, this change was modest (Table 4). On average
reserve establishment increased future cost of purchasing reserves
by about $600 per parcel. The maximum increase was slightly over
$2000 per parcel. This increase was the result for one small lake
where the conservation purchase assured a low residential density
into the future.

3.5. Heuristic vs. optimal selection strategies

Averaged over the 16 lakes, the heuristic algorithms performed
nearly as well as the SDP algorithm. The SDP algorithm had the
highest average CWD and smallest average standard deviation
followed by the minloss and maxgain algorithms. The medians of
CWDwere the same for all three selection algorithms, and lower for
the baseline simulation (Table 5). Likewise, at the individual lake
level there were few differences between the distributions of the
CWD between SDP and the heuristic algorithms (Table 5). The
distribution of CWD for the baseline simulations differed on 11
lakes from the distribution of CWD for SDP and both heuristics.

Finally, we examined the maximum difference in CWD between
SDP, heuristics, and baseline simulations at the individual lake
level. The results show that even in the most extreme cases, the
maximum differences between SDP and the heuristics is quite
small (1.6 CWD/km for maxgain and 0.74 CWD/km for minloss),
indicating that not only did the heuristics work well on average,
they did well on each lake individually. In contrast, the largest
difference between the baseline and SDP was 38.05 CWD/km
(Table 5, Fig. 2).
Table 4
Increase in future conservation costs ($) due to reserve establishment.

SDP vs.
Baseline

Maxgain vs.
Baseline

Minloss vs.
Baseline

Average increase in price due
to cost feedback

600.60 592.09 595.84

Standard Deviation of price due
to costs feedback

595.28 596.74 577.48

Maximum increase in price due
to cost feedback

2258.69 2272.22 2163.94
4. Discussion

There is strong theoretical evidence that land market feedbacks
may undermine conservation, but much less applied knowledge of
how important these feedbacks are. Herewe attempted to integrate
landmarket feedbacks explicitly into an empirical reserve selection
setting by using a novel integration of cost and threat models to
account for partial equilibrium land market feedbacks. To estimate
feedbacks we use previously published threat and cost models that
plausibly estimate the causal impact of reserve establishment.
Using such models provides a framework to integrate land market
feedbacks into the dynamic market for land.

Our empirical example indicated that land market feedbacks
had negligible effects on ecological outcomes. The outcomes from
simulations which included the feedbacks did not differ signifi-
cantly from those that ignored feedbacks. This was true for both
costs and threat feedbacks. Likewise, in our setting reserve estab-
lishment had negligible impacts on the cost of future conservation.

An important question pertains to the generality of these
results. Prior economic research suggests a positive property price
impact of open space, but the strength of these impacts varies
greatly (0.91%e35% of a home’s value (McConnell and Walls,
2005)). In our case, the average effect of reserve establishment on
land prices was less than 1%. Therefore, cost feedbacks may have
been weaker in our case than elsewhere. Likewise, the effect of
reserve establishment on land conversion is theoretically ambig-
uous in settings where land develops from sparse housing to more
dense housing (Lewis et al., 2009) such as in our case. But when
land develops from undeveloped to developed uses, reserve
establishment theoretically increases development threat near
reserves by increasing the returns to developed land relative to the
returns to land in agricultural or forest uses (Wu and Plantinga,
2003). Again, our example may thus represent lesser feedbacks
compared to other common settings. Research into the importance
of feedback strength to reserve selection in other settings may be
a valuable extension of this research (Tóth et al., 2011).

We extend past uses of stochastic dynamic programming (SDP)
to solve the reserve selection problem by simulating the program
over 16 lakes; in essence creating 16 experiments, whichwe used to
compare the outcome of SDP to the heuristic selection algorithms.
Overall, the heuristic algorithmsperformednearlyaswell as SDP. On
the majority of the lakes, the distribution of CWD did not differ
significantly regardless of what selection algorithm was used, and
on each lake the median CWD was equal regardless of selection
algorithm. The fact that the heuristic worked well over a large
number of real world landscapes gives us confidence in using these
selection strategies in cases where all the information needed for
the SDP is not available and potentially when the problem to be
solved is too large for SDP. Thus our paper joins the growing liter-
ature that has found cost only (i.e., return on investment) methods
of reserve selection often do a good job of selecting reserves (Wilson
et al., 2006; Underwood et al., 2008). Likewise, it is also important to
acknowledge that SDP limits us to the use of a small choice set and
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that alternative methods such as mixed integer programming (Tóth
et al., 2011) may be useful for solving larger problems.

In our example, there is relatively low heterogeneity in threat
levels among parcels on the same lake. This was the case because
much of what drives transition probabilities are lake level attri-
butes, which are shared by all parcels on the lake. Our empirical
results thus support past research that has indicated that hetero-
geneity in cost and threat estimates increases their importance in
reserve selection (Wilson et al., 2006; Perhans et al., 2008;
Carwardine et al., 2010).

From a conservation perspective, the simulated program had
heterogeneous effects on the total amount of CWD.While the gains
at some lakes were marginal, other changes were substantial (up to
a 68% increase). Thus, the framework we used provides a second
possible selection mechanism: SPD or heuristics can be used to
select individual reserve sites within a certain area (either defined
by political or ecological borders), and by comparing the simulated
results across alternative areas, one can select both what broader
areas should receive funding and which individual pieces within its
border should be protected. This may be a useful framework when
conservation funding decision is nested, for example when federal
dollars have to be divided among states.

Although in our case land market feedbacks did not play an
important role in reserve selection, we emphasize that state-of-
the-science econometric models can be used to integrate land
market feedbacks into the reserve selection algorithm, and we
show how such models can be used for conservation planning. In
many countries, the data for the type of hedonic and land use
change models we used here are generally freely available to the
public from county, state and federal sources. Where such parcel
level data is unavailable, much of the data required to model bio-
logical benefits (soil, vegetation, slope, elevation etc.) can also be
used to model the land market (Naidoo and Adamowicz, 2006), as
net returns to land are affected by such land quality attributes. This
may be especially true in the developing world where land
conversions are highly correlated with natural resource abundance
and hence biodiversity. We encourage further research that inte-
grates land markets into reserve selection, and to use models of
land cost and threat levels of similar quality as for the biological
aspects of conservation planning.

Here, we address the non-equilibrium impacts of reserve
establishment on the land market, that is, our feedbacks are
contained within each lake. In this way, the development of
a parcel on one lake is unrelated to development on other lakes.
Empirically, reserve establishment is likely to have partial equi-
librium effects when the size of the reserve is relatively small
(such as the reserves simulated here). While there is evidence
that many newly established reserves are actually quite small
(Armsworth and Sanchirico, 2008), conservationists tend to
lobby for the establishment of large reserves, and these may be
more likely to have equilibrium land market impacts. Recent
work (Jantke and Schneider, 2011; Tóth et al., 2011) indicates that
under certain conditions these effects may be important for
reserve selection. At the same time, land purchases that have
equilibrium effects are still likely to influence neighboring
properties through the cost and threat mechanisms developed
here. Therefore, integrating land market feedbacks across scales
from local amenity effects to equilibrium effects remains a chal-
lenge for future work.
Appendix A. Supporting information

Supporting information related to this article can be found at
http://dx.doi.org/10.1016/j.jenvman.2012.10.018.
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